论文
您当前的位置 :
Design and application of the transformer base editor in mammalian cells and mice
论文作者 Han, WY; Gao, BQ; Zhu, JJ; He, ZX; Li, JF; Yang, L; Chen, J
期刊/会议名称 NATURE PROTOCOLS
论文年度 2023
论文类别 Article; Early Access
摘要 Fusing apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like cytidine deaminase with catalytically impaired Cas proteins (e.g., nCas9 or dCas9) provides a novel gene-editing technology, base editing, that grants targeted base substitutions with high efficiency. However, genome-wide and transcriptome-wide off-target mutations are observed in base editing, which raises safety concerns regarding therapeutic applications. Previously, we developed a new base editing system, the transformer base editor (tBE), to induce efficient editing with no observable genome-wide or transcriptome-wide off-target mutations both in mammalian cells and in mice. Here we describe a detailed protocol for the design and application of the tBE. Steps for designing single-guide RNA (sgRNA) and helper sgRNA pairs, making constructs, determining the genome-wide and transcriptome-wide off-target mutations, producing the tBE-containing adeno-associated viruses, delivering adeno-associated viruses into mice and examining the in vivo editing effects are included in this protocol. High-precision base editing by the tBE can be completed within 2-3 weeks (in mammalian cells) or within 6-8 weeks (in mice), with sgRNA-helper sgRNA pairs. The whole process can be collaboratively accomplished by researchers using standard techniques from molecular biology, bioinformatics and mouse husbandry.
影响因子 14.8