Andrew E. Teschendorff

Andrew E. Teschendorff

博士
计算系统表观基因组学研究组组长

邮箱: andrew@sinh.ac.cn

电话: +86-21-54920659

研究组网站: https://aet21.github.io

所属部门: 中国科学院计算生物学重点实验室

个人简历

2020年-至   今:中国科学院上海营养与健康研究所/中国科学院计算生物学重点实验室研究组长,研究员
2015年-至   今:英国伦敦学大学学院(University College London)癌症研究所荣誉研究员
2013年-2019年:中国科学院-马普学会计算生物学伙伴研究所(中国科学院上海生命科学研究院计算生物学研究所)研究组长,计算系统表观基因组学研究员
2015年-2019年:英国皇家学会Newton Advanced Fellow
2008年-2013年:英国伦敦大学学院(University College London)癌症研究所
2003年-2008年:英国剑桥大学肿瘤系乳腺癌功能基因组学实验室(Carlos Caldas教授领衔),Senior Postdoctoral Fellow
2001年-2003年:University of Warwick数学研究所数学生物学研究组(David A. Rand教授领衔),Research assistant
2000年-2001年:British Telecom Labs复杂性研究组(Sverrir Olafsson博士领衔),Research staff scientist
1996年-2000年:英国剑桥大学,获理论粒子物理博士学位
1995年-1996年:英国剑桥大学,Certificate of Advanced Study,数学专业,Awarded Distinction
1990年-1995年:英国爱丁堡大学,学士学位,数理物理学专业,Awarded 1st Class
  

研究方向

计算系统表观基因组学

研究内容

    研究方向主要是统计生物信息学,主要关注癌症表观基因组学和癌症系统生物学的统计学分析。研究的目的是应用创新的计算学方法帮助理解肿瘤形成并开发新的一般癌症风险预测和早期诊断工具。
  

代表论著(#第一作者,*通讯作者)

1. Luo Q#, Dwaraka VB#, Chen Q#, Tong H, Zhu T, Seale K, Raffaele JM, Zheng SC, Mendez TL, Chen Y, Carreras N, Begum S, Mendez K, Voisin S, Eynon N, Lasky-Su JA*, Smith R*, Teschendorff AE*. A meta-analysis of immune-cell fractions at high resolution reveals novel associations with common phenotypes and health outcomes. Genome Med 2023 Jul 31;15(1):59

2. Maity AK, Teschendorff AE*. Cell-attribute aware community detection improves differential abundance testing from single-cell RNA-Seq data. Nat Commun 2023 Jun 5;14(1):3244

3. Liu T#, Zhao X#, Lin Y#, Luo Q#, Zhang S#, Xi Y, Chen Y, Lin L, Fan W, Yang J, Ma Y, Maity AK, Huang Y, Wang J, Chang J*, Lin D*, Teschendorff AE*, Wu C*. Computational Identification of Preneoplastic Cells Displaying High Stemness and Risk of Cancer Progression. Cancer Res 2022 Jul 18;82(14):2520-2537

4. Zhu TY, Liu J, Beck S, Pan S, Capper D, Lechner M, Thirlwell C, Breeze CE*, Teschendorff AE*. A pan-tissue DNA methylation atlas enables in-silico decomposition of human tissue methylomes at cell-type resolution. Nat Methods 2022 Mar 11;19(3):296-306

5. Teschendorff AE*, Feinberg AP. Statistical mechanics meets single-cell biology. Nat Rev Genet 2021 Jul;22(7):459-476

6. Teschendorff AE*, Maity AK, Hu X, Weiyan C, Lechner M. Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data. Bioinformatics 2021 Jul 12;37(11):1528-1534

7. You C, Wu S, Zheng SC, Zhu T, Jing H, Flagg K, Wang G, Jin L, Wang S, Teschendorff AE*. A cell-type deconvolution meta-analysis of whole blood EWAS reveals lineage-specific smoking-associated DNA methylation changes. Nat Commun 2020 Sep 22;11(1):4779

8. Chen W, Morabito SJ, Kessenbrock K, Enver T, Meyer KB, Teschendorff AE*. Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Commun Biol 2019 Aug 9;2:306

9. Zheng SC, Breeze CE, Beck S, Teschendorff AE*. Identification of differentially methylated cell types in epigenome-wide association studies. Nat Methods 2018 Dec;15(12):1059-1066

10. Teschendorff AE*, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet 2018 Mar;19(3):129-147

11. Teschendorff AE*, Enver T. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome. Nat Commun 2017 Jun 1;8:15599

12. Zheng SC, Beck S, Jaffe AE, Koestler DC, Hansen KD, Houseman AE, Irizarry RA, Teschendorff AE*. Correcting for cell-type heterogeneity in epigenome-wide association studies: revisiting previous analyses. Nat Methods 2017 Feb 28;14(3):216-217

13. Teschendorff AE*, Gao Y, Jones A, Ruebner M, Beckmann MW, Wachter DL, Fasching PA, Widschwendter M. DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat Commun 2016 Jan 29;7:10478

14. Teschendorff AE*, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, Anjum S, Hardy R, Salvesen HB, Thirlwell C, Janes SM, Kuh D, Widschwendter M. Correlation of Smoking-Associated DNA Methylation Changes in Buccal Cells With DNA Methylation Changes in Epithelial Cancer. JAMA Oncol 2015 Jul;1(4):476-485

15. Teschendorff AE*, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, Beck S. A Beta-Mixture Quantile Normalisation method for correcting probe design bias in Illumina Infinium 450k DNA methylation data. Bioinformatics 2013 Jan 15;29(2):189-196