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Abstract

Background: Few studies assessed effects of individual and multiple ions simultaneously on metabolic outcomes, due to
methodological limitation.

Methodology/Principal Findings: By combining advanced ionomics and mutual information, a quantifying measurement
for mutual dependence between two random variables, we investigated associations of ion modules/networks with
overweight/obesity, metabolic syndrome (MetS) and type 2 diabetes (T2DM) in 976 middle-aged Chinese men and women.
Fasting plasma ions were measured by inductively coupled plasma mass spectroscopy. Significant ion modules were
selected by mutual information to construct disease related ion networks. Plasma copper and phosphorus always ranked
the first two among three specific ion networks associated with overweight/obesity, MetS and T2DM. Comparing the
ranking of ion individually and in networks, three patterns were observed (1) ‘‘Individual ion,’’ such as potassium and
chrome, which tends to work alone; (2) ‘‘Module ion,’’ such as iron in T2DM, which tends to act in modules/network; and (3)
‘‘Module-individual ion,’’ such as copper in overweight/obesity, which seems to work equivalently in either way.

Conclusions: In conclusion, by using the novel approach of the ionomics strategy and the information theory, we observed
potential associations of ions individually or as modules/networks with metabolic disorders. Certainly, these findings need
to be confirmed in future biological studies.
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Introduction

Emerging evidence has suggested that ion homeostasis may play

important roles in the global epidemic trend of obesity and related

metabolic abnormalities, such as insulin resistance, metabolic

syndrome, and type 2 diabetes. Higher body iron (Fe) stores were

reported to predict hyperglycemia and type 2 diabetes by some

prospective studies [1,2,3], whereas higher serum magnesium (Mg)

levels were associated with lower risks of metabolic syndrome and

type 2 diabetes [4,5]. Moreover, higher dietary intakes of calcium

(Ca), Mg and zinc (Zn) were also related with lower incidence of

type 2 diabetes [6,7,8,9,10]. Meanwhile, data from intervention

study also demonstrated that Ca and Zn supplementation could

significantly improve fasting glucose levels and insulin resistance

[11,12]. However, most of the previous studies have focused on

the role(s) of single or a few ions simultaneously. Given delicate

homeostatic controlled nature, relationships of multi-ions are

extremely complicated with synergistic or antagonistic interactions
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under various physical and pathologic conditions [13,14]. Owing

to methodological limitation which could only estimate a few ions

at one time, it remains unclear whether a single ion alone or a

network of several ions affects metabolic outcomes in a different

manner. With recently advanced ionomic technology combining

with a mutual information approach which studies multiple ions

and their interactions globally as ion modules and/or ion

networks, we therefore are able to elucidate complicate associa-

tions of ions with metabolic abnormalities systematically.

In recent years, ‘‘omics’’ strategy in the combination with

complex multivariate statistical analysis has been extensively

applied to discriminate organic bimolecular and reveal biomarkers

or patterns in sampled subpopulations in a comparative quanti-

fication manner [15]. Introduced by Lahner and colleagues, the

term of ionome means the inclusion of all metals, metalloids, and

nonmetals presented in an organism [16], and has been extended

as metallome that includes biologically significant nonmetals such

as phosphorus (P), sulfur (S), selenium (Se) [17,18]. However, little

is known regarding to the information of the ionome so far

[19,20]. Because ionome involves such a broad range of important

biological processes, including electrophysiology (potassium [K],

sodium [Na]), signal transduction (Ca, Zn), enzymology (copper

[Cu], Zn, Se) and structural integrity (Zn, Fe), understanding of

the role(s) of ionomic profile and its association with metabolic

abnormality will provide novel mechanistic insights linking ion

homeostasis and metabolic consequences.

One of major challenges related with analysis of complicated

ion network is that traditional methods like principal component

analysis (PCA) which is usually based on linear dependences to

construct patterns for data with high dimension [21]. However,

the interaction among multiple ions might result in much more

complex relationships within ion modules/networks than simply

linear dependences [13,14]. To overcome this problem, we

applied mutual information in our analysis. Mutual information

is a measurement used to quantify the mutual dependence

between two random variables [22,23], and can be applied for

either linear or non-linear dependence [24,25]. This method has

been widely used in measuring the co-expression of genes for

microarray data analysis [26], and in applying machine learning

approaches of bioinformatics, such as feature selection [27]. It was

indicated by number of studies that mutual information was more

accurate than analysis of variance (ANOVA) and Kruskal-Wallis

test in detecting associations [28]. Therefore, by combining the

advanced ionomic with mutual information approach, we

systematically investigated the ionomic profile, represented by

ion modules and/or networks, and their associations with

overweight/obesity, metabolic syndrome and type 2 diabetes in

Chinese men and women.

Methods

Ethics Statement
The study was approved by the Institutional Review Board of

the Institute for Nutritional Sciences and written informed consent

was obtained from each participants.

Study Population and Sample Collection
This study used a population-based case-control sample

including 559 overweight/obese (body mass index

[BMI]$24.0 kg/m2) and 500 age and sex matched normal-weight

(18#BMI,24.0 kg/m2) individuals aged 35 to 54 years living in

Shanghai, China. The detail of the study was described in

elsewhere [29]. Home interviews were conducted by trained

health professionals and information on demographics, health

status and behaviors were collected through standardized ques-

tionnaires [29]. All participants were subsequently invited to take a

physical examination after overnight fasting in the local Centers

for Disease Control and Prevention (CDC) and community clinics.

Body weight, height, waist circumference, and blood pressure were

measured by a standardized protocol [29]. Individuals without

data of ion (n = 83, 7.8%) were excluded and a total of 976

participants was included in the final analyses.

During the physical examination, fasting peripheral venous

blood was collected by a tube containing anticoagulant and then

centrifuged at 4uC, 3000 rpm for 15 min. All samples were

shipped in dry ice to the Institute for Nutritional Sciences and

stored at 280uC until analysis. Measurements of total cholesterol,

high-density lipoprotein (HDL) cholesterol, low-density lipoprotein

(LDL) cholesterol, triglycerides, glucose, C-reactive protein (CRP),

and interleukin-6 (IL-6) were described previously [29].

Metabolic syndrome was defined according to the updated

National Cholesterol Education Program-Adult Treatment Panel

III criteria for Asian-Americans [30], including at least 3 of the

following components: 1) Waist circumferences $90 cm in men or

$80 cm in women; 2) Triglycerides $1.7 mmol/l; 3) HDL

cholesterol ,1.03 mmol/l in men or ,1.30 mmol/l in women; 4)

Blood pressure $130/85 mmHg, or current use of anti-hyperten-

sive medications; and 5) Fasting plasma glucose (FPG)

$5.6 mmol/l. Type 2 diabetes was defined as FPG

$7.0 mmol/L or 2-h postload plasma glucose $11.1 mmol/l

during an oral glucose tolerance test (OGTT). OGTT was

conducted in 476 subjects with 5.5#FPG,7.0 mmol/l during the

physical examination. The selection procedure for OGTT was

described elsewhere [29].

Laboratory Measurements for ICP-MS Detection
Instrument and reagents. Agilent 7500cx inductively cou-

pled plasma mass spectroscopy (ICP-MS) system (Agilent Tech-

nologies, Tokyo, Japan) equipped with a G3160B I-AS integrated

autosampler was employed to measure ion profile. G3148B ISIS

system was also used to reduce detection time and volume of each

sample. Ni sample cone and skimmer cone were utilized with an

orifice diameter of 1.0 and 0.4 mm, respectively. Sample

introduction was performed with a micromist nebulizer combined

with a Scott-type double pass spray chamber (Agilent Technolo-

gies). The instrument was tuned to optimal conditions in terms of

sensitivity (Li, Y, Co, and Tl) and CeO/Ce and Ce2+/Ce by using

a tuning solution (Agilent Technologies) containing 1 mg/L of Li,

Y, Tl, Ce and Co in 2% HNO3 (w/v). The determination was

operated in full quantitative mode, and typical operating

conditions used in this study were summarized in Table S1.

The internal standard containing Ge, 6Li, Lu, Rh, Tb, Sc, In,

and Bi (SPEX CertiPrep) was injected by peristaltic pump into the

ion source at an approximate concentration of 500 mg/L in the

online mode. The multi-element standard solution containing

aluminum (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be),

bismuth (Bi), Ca, cadmium (Cd), cobalt (Co), chromium (Cr), Cu,

Fe, K, lithium (Li), Mg, manganese (Mn), molybdenum (Mo), Na,

nickel (Ni), P, lead (Pb), palladium (Pd), rhenium (Re), S, antimony

(Sb), Se, silicon (Si), stannum (Sn), strontium (Sr), vanadium (V),

titanium (Ti), wolfram (W) and Zn, each at a concentration of

1000 mg/mL (SPEX CertiPrep) were used. We detected 17

elements of them including Cr, Mn, Fe, Zn, Cu, Se, Mo, Sr, Sn,

Sb, Ti, Mg, Ca, P S, K, and Re. The standard curve included 0,

0.1, 1, 10, 100, 1000 and 10000 mg/L, respectively. Ultrapure

water (18.2 MV) was obtained from a water-purification system

(Sartorius, Arium 61316). Ultrapure grade HNO3 (100ppt, 65%

v/v, TAMA) was used in this study.

Ionomic Profile and Metabolic Abnormalities
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Each 100 mL of the plasma sample was placed into a 15 mL

centrifuge tube coated with PFA, to which 400 mL HNO3 was

added. The centrifuge tube was then placed into 150uC water bath

for 3 h until the solution became clear. The resulting solution was

diluted with ultrapure water to about 2 mL. The diluted samples

were stored at 4uC for ICP-MS analysis.

ICP-MS analytical validation. To test the validity of the

whole detection system, we determined concentrations of Na, Mg,

K, Ca, Fe, Cu, Zn, and Se in human serum (National Institute of

Quality Standards, Beijing, China, GBW09152) and compared

them with reference concentrations. Serum samples were pre-

treated and determined in the same procedure as described above

(Table S2). Moreover, the recovery test of 17 elements in human

plasma samples was repeated three times. At first, 17 elements

were quantified at their original concentrations. Then, the 20 mg/

L multi-element standard solution was added to random plasma

samples, and the spiked samples were assayed. Recoveries were

estimated using the formula: recovery (%) = ((amount found-

original amount)/(amount spiked)) 6 100% (Table S3). Addi-

tionally, the intra- and inter-day stability of the instrument was

assessed by analyzing concentrations of 17 elements in the quality

control sample of fetal bovine serum (Sijiqing Co. Ltd., Hangzhou,

China) added with 20 mg/L multi-element standard solution. We

detected quality control samples after each 10 plasma samples.

Moreover, concentrations of 17 elements in one human plasma

sample were detected 10 times in parallel to confirm the precision

of the method (Table S4).

Bioinformatics Analysis
Log-transformations were performed for all 17 ions to

approximate normality. Analysis of covariance for continuous

variables and logistic regression models for categorical variables

were applied for the comparison across different metabolic

outcomes.

All ion modules were tested to determine whether they were

associated with overweight/obesity, metabolic syndrome or type 2

diabetes based upon information theory. When computing the

conditional mutual information between ion module and disease

status, the following variables: for overweight/obesity, sex and age

were adjusted; for metabolic syndrome and type 2 diabetes, sex,

age and BMI were adjusted. Then the significant ion modules

were selected to construct relevant ion networks as following three

steps:

Table 1. Characteristics of participants according to obese status (n = 976).

Normal-weight Overweight/Obesity

18#BMI,24 BMI$24 P value

N 460 516

Age (yrs)* 45.8 (5.5) 46.0 (5.3) 0.487

Men (n, %)* 149 (32.4) 207 (40.1) 0.012

Physical inactivity (n, %) 230 (50.0) 256 (49.6) 0.912

Education levels (n, %) 0.004

0,9 yrs 105 (22.8) 159 (30.8)

10,12 yrs 247 (53.7) 260 (50.4)

.12 yrs 108 (23.5) 97 (18.8)

Current smoker (yes, n, %) 97 (21.1) 137 (26.6) 0.687

Alcohol drinker (yes, n, %) 168 (36.5) 183 (35.5) 0.106

Family history of chronic diseases (n, %) 186 (40.4) 209 (40.5) 0.972

Metabolic syndrome (n, %) 43 (9.4) 356 (69.0) ,0.001

Type 2 diabetes (n, %) 26 (5.7) 96 (18.6) ,0.001

BMI (kg/m2) 21.0 (1.4) 27.9 (2.6) ,0.001

Waist circumference (cm) 75.7 (6.1) 92.9 (7.8) ,0.001

Systolic blood pressure (mmHg) 118.0 (15.1) 130.5 (17.5) ,0.001

Diastolic blood pressure (mmHg) 74.4 (9.7) 83.7 (11.4) ,0.001

Glucose (mmol/l) 5.76 (1.05) 6.26 (1.49) ,0.001

Insulin (mU/ml){ 7.4 (7.0–7.7) 11.2 (10.8–11.7) ,0.001

HOMA-IR{ 0.85 (0.82–0.89) 1.31 (1.26–1.37) ,0.001

Total cholesterol (mmol/l) 5.14 (1.15) 5.30 (1.15) 0.020

LDL cholesterol (mmol/l) 3.12 (0.94) 3.40 (0.96) ,0.001

HDL cholesterol (mmol/l) 1.53 (0.44) 1.24 (0.34) ,0.001

Triglycerides (mmol/l){ 0.99 (0.94–1.04) 1.57 (1.49–1.65) ,0.001

CRP (mg/l){ 0.60 (0.55–0.65) 1.35 (1.24–1.46) ,0.001

IL-6 (pg/ml){ 1.19 (1.12–1.26) 1.66 (1.57–1.75) ,0.001

P value was calculated after adjustment for age and sex. Data are arithmetic mean (SD). Percentages may not sum to 100 because of rounding.
*Data not adjusted for itself.
{Data are geometric mean (95% CI).
doi:10.1371/journal.pone.0038845.t001
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Table 2. Characteristics of ion concentrations in study participants.

Overweight/obesity Metabolic syndrome Type 2 diabetes

No (n = 460) Yes (n = 516) No (n = 577) Yes (n = 399) No (n = 854) Yes (n = 122)

Age (yrs)* 45.8 (5.5) 46.0 (5.3) 45.4 (5.5) 46.7 (5.1){ 45.9 (5.4) 46.2 (5.3)

Men (n, %)* 149 (32.4) 207 (40.1){ 188 (32.6) 168 (42.1){ 304 (35.6) 52 (42.6)

BMI (kg/m2) 21.0 (1.4) 27.9 (2.6){ 22.6 (3.2) 27.6 (3.2){ 24.2 (3.9) 27.2 (4.0){

Ca (ppm){ 6.46 (6.39–6.54) 6.54 (6.46–6.62) 6.50 (6.44–6.58) 6.49 (6.40–6.59) 6.51 (6.45–6.57) 6.47 (6.33–6.62)

Cr (ppb){ 0.70 (0.49–0.99) 0.75 (0.54–1.04) 0.52 (0.38–0.72) 1.15 (0.81–1.64){ 0.66 (0.51–0.85) 1.42 (0.77–2.60){

Cu (ppb){ 629.7 (613.7–646.1) 657.3 (640.6–674.5){ 630.7 (616.2–645.6) 664.0 (644.9–683.7){ 639.4 (627.2–651.9) 678.0 (641.8–716.4){

Fe (ppb){ 818.5 (779.8–859.2) 910.2 (870.0–952.3){ 847.2 (810.9–885.1) 893.4 (849.2–939.8) 859.6 (829.2–891.2) 909.9 (837.9–988.1)

K (ppm){ 413.0 (403.0–423.2) 410.6 (401.4–420.0) 412.2 (403.3–421.3) 411.0 (400.6–421.6) 411.1 (403.8–418.5) 416.0 (398.0–434.8)

Mg (ppm){ 18.7 (18.5–18.8) 18.4 (18.3–18.6){ 18.6 (18.5–18.8) 18.4 (18.2–18.6){ 18.6 (18.5–18.8) 18.0 (17.6–18.4){

Mn (ppb){ 1.24 (1.04–1.49) 1.42 (1.23–1.64) 1.24 (1.06–1.44) 1.49 (1.26–1.76) 1.31 (1.16–1.48) 1.52 (1.15–2.01)

Mo (ppb){ 0.76 (0.62–0.94) 0.68 (0.55–0.82) 0.76 (0.63–0.90) 0.66 (0.52–0.84) 0.71 (0.61–0.83) 0.75 (0.51–1.09)

P (ppm){ 75.6 (74.4–76.7) 77.7 (76.6–78.8){ 74.9 (74.0–75.9) 79.3 (77.9–80.7){ 76.3 (75.5–77.2) 79.3 (76.8–81.8){

Re (ppb){ 0.07 (0.07–0.08) 0.08 (0.07–0.08) 0.07 (0.07–0.08) 0.07 (0.07–0.08) 0.08 (0.07–0.08) 0.07 (0.06–0.07){

S (ppm){ 1012.2 (1003.4–1021.1) 1029.1 (1019.7–1038.5){ 1015.2 (1007.3–1023.1) 1029.7 (1018.7–1040.8){ 1018.5 (1011.7–1025.4) 1039.4 (1020.2–1059.1){

Sb (ppb){ 0.50 (0.40–0.62) 0.38 (0.30–0.48) 0.40 (0.32–0.49) 0.49 (0.38–0.62) 0.42 (0.35–0.50) 0.55 (0.37–0.82)

Se (ppb){ 95.3 (93.7–96.9) 96.8 (95.1–98.4) 94.9 (93.4–96.4) 97.8 (95.9–99.7){ 95.6 (94.4–96.8) 99.5 (95.6–103.5){

Sn (ppb){ 0.91 (0.87–0.95) 0.93 (0.89–0.98) 0.90 (0.87–0.94) 0.95 (0.91–1.00) 0.93 (0.90–0.96) 0.89 (0.82–0.97)

Sr (ppb){ 32.3 (31.5–33.2) 34.0 (33.1–34.8){ 32.5 (31.7–33.2) 34.2 (33.2–35.3){ 33.2 (32.5–33.8) 33.2 (31.7–34.7)

Ti (ppb){ 139.8 (138.6–141.1) 140.4 (139.1–141.8) 139.8 (138.7–140.9) 140.6 (139.1–142.2) 139.9 (139.0–140.9) 141.5 (139.1–144.1)

Zn (ppb){ 389.6 (379.2–400.4) 404.7 (394.5–415.2) 393.8 (384.8–403.1) 402.9 (390.7–415.5) 397.5 (389.4–405.6) 398.1 (380.9–415.9)

Data are arithmetic mean (SD).
*Data not adjusted for itself.
{Data are geometric mean (95% CI).
{P value,0.05 between 2 groups after adjustment for age and sex. Percentages may not sum to 100 because of rounding.
doi:10.1371/journal.pone.0038845.t002

Table 3. Partial spearman correlation coefficients between ions and metabolic features and inflammatory markers (n = 976).

Ca Cr Cu Fe K Mg Mn Mo P Re S Sb Se Sn Sr Ti Zn

Age* 20.06 0.15{ 0.14{ 0.081 20.02 0.071 0.05 0.19{ 0.25{ 20.11{ 0.03 0.18{ 0.15{ 0.11{ 0.02 0.04 20.13{

BMI 0.07 0.00 0.13{ 0.081 0.01 20.081 0.02 20.05 0.13{ 0.04 0.11{ 20.02 0.04 0.02 0.10{ 0.05 0.09{

Waist circumference 0.06 0.06 0.17{ 0.06 0.01 20.071 0.02 20.04 0.15{ 20.00 0.12{ 0.03 0.071 0.06 0.14{ 0.06 0.04

SBP 0.12{ 0.01 0.06 0.05 20.00 20.03 0.10{ 20.02 0.17{ 0.10{ 0.20{ 20.03 0.061 0.06 0.10{ 0.14{ 0.14{

DBP 0.11{ 0.071 0.10{ 0.05 0.01 20.01 0.13{ 20.00 0.19{ 0.081 0.19{ 0.01 0.081 0.09{ 0.12{ 0.15{ 0.14{

Glucose 20.18{ 0.16{ 0.13{ 20.04 20.00 20.15{ 20.01 0.00 0.02 20.25{ 20.04 0.13{ 0.03 20.04 20.02 20.12{ 20.19{

Insulin 0.01 0.10{ 0.16{ 20.01 0.04 20.061 20.081 0.071 0.20{ 20.05 0.15{ 0.09{ 0.15{ 0.05 0.02 0.04 20.03

HOMA-IR 20.00 0.11{ 0.17{ 20.01 0.04 20.071 20.081 0.071 0.21{ 20.06 0.15{ 0.10{ 0.16{ 0.05 0.02 0.03 20.04

Total cholesterol 20.13{ 0.08{ 0.14{ 0.03 0.01 20.03 20.00 0.00 0.37{ 20.19{ 20.01 0.071 0.17{ 20.02 20.02 20.071 20.10{

LDL cholesterol 20.08{ 0.071 0.16{ 0.04 0.01 20.01 20.00 20.01 0.32{ 20.13{ 0.02 0.06 0.17{ 20.00 0.00 20.04 20.05

HDL cholesterol 20.16{ 0.01 20.06 0.00 20.01 20.03 0.02 0.01 0.03 20.13{ 20.15{ 0.04 0.00 20.05 20.081 20.12{ 20.16{

Triglycerides 20.02 0.14{ 0.19{ 0.01 20.03 20.02 0.01 0.05 0.40{ 20.13{ 0.12{ 0.10{ 0.13{ 0.05 0.09{ 0.04 20.01

CRP 0.04 0.071 0.42{ 20.081 20.04 20.05 0.04 20.01 0.16{ 20.02 0.06 0.04 0.071 0.08{ 0.11{ 0.05 20.05

IL-6 0.071 0.05 0.31{ 20.06 20.06 20.00 0.01 20.03 0.10{ 20.01 0.071 0.01 0.00 0.06 0.13{ 0.081 20.01

All correlation coefficients were calculated after adjustment for age and sex.
*Data not adjusted for itself.
{P,0.001,
{P,0.01,
1P,0.05.
doi:10.1371/journal.pone.0038845.t003

Ionomic Profile and Metabolic Abnormalities

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38845



Step 1: Scoring ion modules. An ion module was defined as

an ion set. We exhausted all possible combinations with number of

ions from 1 to 8. There were
P8

i~1

Ci
17~65,535 such ion modules.

Given a particular ion module M, let X represent its vector of

scores over the samples, and let Y represent the corresponding

vector of class labels (disease or normal). To derive a, expression

values gij were normalized to z-transformed scores zij which for

each ion i had mean m= 0 and standard deviation d= 1 over all

samples j.

The individual zij of each member ion in the ion module were

averaged into a combined z-score, which was designated as xj.

Many statistical methods, such as the t or Wilcoxon score, could be

used to score the relationship between X and Y. In this study, we

defined the conditional mutual information between X and Y

I X; YDZð Þ~H X,Zð ÞzH Y,Zð Þ{H X,Y,Zð Þ{H Zð Þ

Where X, Y and Z enumerate values of ion module levels,

metabolic disorders and adjust variables, respectively. H was the

entropy of the empirical probability distribution. To derive a’ from

a, activity levels were discredited into [log 2(# of samples) +1] = 11

equally spaced bins [31].

Step 2: Searching for significant ion modules. To assess

the significance of the identified ion modules, we calculated the

exact permutation p-values using the function permp in R package

statmod [32]. For the random model, the class labels were

permuted 1,000 times, yielding a null distribution of mutual

information scores for each ion module; the real score of each ion

module was indexed on this null distribution. In this study, the

Figure 1. The overweight/obesity, metabolic syndrome and type 2 diabetes related ion network. A. The overweight/obesity related ion
network; B. The metabolic syndrome related ion network; C. The type 2 diabetes related ion network. The size of node represents the combined
Fisher score of significant combinations involve a specific ion, which indicates the strength of ion module in association with metabolic disorders. The
width of the edge represents the Fisher score of edge between connected ions, which indicates the possibility of forming an ion module associated
with metabolic disorders. Three ion patterns were postulated when comparing the rank of ion effect in individual and in network associated with
metabolic disorders. ‘‘Individual ion’’ was defined as the rank of ion in the network posterior to that of single ion. ‘‘Module ion’’ was defined as the
rank of ion in network prior to that of single ion. ‘‘Module-individual ion’’ was defined as the rank of ion in network equivalent to that of single ion.
doi:10.1371/journal.pone.0038845.g001
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significance of ion modules was selected to satisfy the permutation

tests with P,0.001, according to the null distributions of S.

Step 3: Identifying disease related ion network. After

obtained those ion modules that were significantly associated with

metabolic abnormalities, we identified three ion networks to

illustrate the pattern of ion cooperation. For ion x which was in k

significant ion modules, the combined score using Fisher’s method

[33,34,35] was

Scorex~{2
Xk

i~1

loge(pi)

Where pi was the permutation p-value for ion module i which has

ion x. Scorex had a chi-square distribution with 2k degrees of

freedom, where k was the number of tests being combined.

Within the significant ion module, each two ions were

considered as possible edge. So each ion module was a full

connected module. All the significant ion modules formed the

candidate network. In the network, each edge had a score. For

edge between ion x and ion y, the score was

Scoree(x,y)~ScorexzScorey

To identify the maximum scored subnetwork, we used a greedy

edge expansion algorithm by growing from every locally maximal

scored edge whose score was larger than its adjacency [33]. Every

growing new edge would get a probability by a hypergeometric

distribution:

p~ P
e{1

i~0

r{i

E{i

Here E was the number of edges in the candidate network and e

was how many edges had already been included during extension.

This value was used to measure the probability to get an edge with

higher rank than r from the total E edges when we obtained the r-

rank at present step. The probability equals to 1 when all edges

were selected and there was a minimum with the increase of e. The

minimum one was used as our cutoff to terminate the growth

procedure. In this way, the most of significant subnetwork were

selected as the identified metabolic outcome related ion network.

To study the module structure of ions, the combined score of

ion set was defined as X~fx1,x2 � � � xng using Fisher’s method

[33,34,35]

ScoreX~fx1,x2���xng~{2
Xk

i~1

loge(pi)

where pi was the permutation p-value for ion module i which

included ion set X~fx1,x2 � � � xng.

Results

Characteristics of Ion Concentrations in the Study
Population

The study population included 516 overweight/obese and 460

normal-weight participants. The mean BMI values were

27.962.6 kg/m2 and 21.061.4 kg/m2 for overweight/obese and

normal-weight participants, respectively (P,0.001). The preva-

lence were 40.9% (n = 399) for metabolic syndrome and 12.5%

(n = 122) for type 2 diabetes in the study population.

Compared with those of normal-weight subjects, overweight/

obese participants were more likely to be male, with lower

educational attainment and higher prevalence of metabolic

syndrome and type 2 diabetes (all P,0.05; Table 1). They also

exhibited higher values of waist circumference, blood pressure,

glucose, insulin, HOMA-IR, total cholesterol, LDL cholesterol,

triglycerides, CRP and IL-6, and lower HDL cholesterol

concentration (all P,0.05).

As shown in Table 2, compared to the normal groups, all

groups with obesity, metabolic syndrome or type 2 diabetes had

elevated levels of Cu, P and S, but lower Mg concentration, after

adjusting for age and sex. In addition, participants with

overweight/obesity, metabolic syndrome and type 2 diabetes also

appeared to have higher levels of Fe and Sr, Cr, Se and Sr, or Cr

and Se.

Plasma Cu and P levels were positively associated with most of

the metabolic traits listed in Table 3. In addition, plasma levels of

Ca, Cr, Mg, Re, Sb, Ti and Zn were also significantly correlated

with fasting glucose levels while concentrations of Cr, Re, S, Se

and Sr were significantly correlated with triglyceride levels.

Notably, strong positive correlations were observed between Cu

and CRP (r = 0.42) and also between Cu and IL-6 (r = 0.31) after

adjusting for age and sex (all P,0.001). Other ions such as P and

Sr were also significantly correlated with inflammatory markers (all

P,0.05).

Metabolic Disorders Related Ion Modules and Networks
There were 50, 60 and 38 ion modules associated with

overweight/obesity, metabolic syndrome and type 2 diabetes with

exact permutation P-value ,0.001, respectively. The number of

exact permutation is 65,535 ion modules with overweight/obesity,

metabolic syndrome and type 2 diabetes. The complete exact

permutation P value (,0.01) list of ion modules with overweight/

obesity, metabolic syndrome and type 2 diabetes were presented in

Table S5, Table S6 and Table S7.

The overweight/obesity, type 2 diabetes and metabolic

syndrome related ion networks were shown in Figure 1. The

Fisher score of 68 edges between connected ions in those three

networks were also demonstrated in Table S8, Table S9 and

Table S10. Among the 68 edges of all three networks, Cu-P

ranked in the first, suggesting the strongest connected ion pair

(Tables S8, S9, and S10). While Cu-Zn, a previously well

studied ion pair, ranked 14th among 68 edges of overweight/

obesity network (Table S8), 17th among 68 edges of metabolic

syndrome network (Table S9), and 19th among 68 edges of type 2

diabetes network (Table S10).

To show the effects of highly connected ion modules, we

calculated the combined Fisher score for two ion modules and

three ion modules (Table S11). Table 4, Table 5 and Table 6
showed that two ion modules contained Cu and three ion modules

contained Cu-Zn were associated with overweight/obesity,

metabolic syndrome and type 2 diabetes (extracted from Table
S11). The Cu-P module scored the highest in all two ion modules

of Cu. While in three ion modules of Cu-Zn, the Cu-Zn-P module

scored the highest for both overweight/obesity and metabolic

syndrome, and the Cu-Zn-Mg module scored the highest for type

2 diabetes.

Postulated Ion Patterns in Association with Metabolic
Disorders

Figure 1 also showed the exact permutation P-values of single

ion with overweight/obesity, metabolic syndrome and type 2
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diabetes, respectively. Plasma levels of Cr, Cu, K and Mo were

significantly associated with overweight/obesity; plasma levels of

K, P, Cu, Mo and Cr were significantly associated with metabolic

syndrome; plasma levels of Cr, K, Mo, Cu and P were significantly

associated with type 2 diabetes (all P,0.05). Ranks of ions in the

networks were also displayed in Figure 1. Comparing the rank of

ion effect in individual and in network associated with metabolic

disorders, three ion patterns were postulated: (1) ‘‘Individual ion’’

was defined as the rank of ion in the network posterior to that of

single one, including K and Cr. Those ions were prone to affect

metabolic disorders in individual ways; (2) ‘‘Module ion’’ was

defined as the rank of ion in network prior to that of single ion,

which was prone to affect metabolic disorders in combination with

other ions. Fe was not significantly associated with type 2 diabetes,

but always occurred in diabetes associated ion modules; and (3)

‘‘Module-individual ion’’, in that situation ion like Cu ranked

equivalently in individual and in network associated with obesity.

Discussion

To our best knowledge, this was the first study to utilize the

novel approach of ionomics with mutual information to investigate

simultaneously single ion and multiple ions that were represented

by ion modules/networks and the associations with metabolic

abnormalities in human population. Three constructed ion

networks were found to be associated specifically with obesity,

metabolic syndrome and type 2 diabetes. Effects of ion(s) could be

postulated as ‘‘Individual ion’’, ‘‘Module ion’’ and ‘‘Module-

individual ion’’, suggesting potential associations of different ions

and/or ion modules/networks with the metabolic risks in the

Chinese population.

In this study, using ionomic approach, instead of individual ion,

we revealed not only the complicated relationships of ion-ion, ion-

phenotypes including obesity, metabolic syndrome and type 2

diabetes, but also specific ion modules/networks, which linked

with different stages in obesity related metabolic disorders.

Previously, individual role of specific ions like Fe and Zn in the

pathogenesis of metabolic disorders have been broadly investigat-

ed in cross-sectional studies, prospective studies, and even clinical

trials [1,2,7,11,36]. More recently, some of investigators have used

Mass Spectrometry and Atomic Absorption Spectroscopy to

measure multi-ions. They also compared individual ion concen-

trations between obese or diabetic cases and non-obese or non-

Table 4. Two ion module of Cu and three ion module of Cu
and Zn in overweight/obesity.

Two ion module of Cu Three ion module of Cu and Zn

Ion 1 Ion 2 Score Ion 1 Ion 2 Ion 3 Score

Cu P 428.3428 Cu Zn P 124.3576

Cu Mo 317.8027 Cu Zn Mo 82.90506

Cu Sb 303.9852 Cu Zn Sb 82.90506

Cu Cr 276.3502 Cu Zn Mg 69.08755

Cu Sn 234.8977 Cu Zn Cr 27.63502

Cu Mg 179.6276 Cu Zn Fe 27.63502

Cu Re 179.6276 Cu Zn Re 27.63502

Cu Mn 151.9926 Cu Zn S 27.63502

Cu S 124.3576 Cu Zn Se 27.63502

Cu Zn 124.3576 Cu Zn Sn 27.63502

Cu Sr 110.5401 Cu Zn Ca 13.81751

Cu Fe 96.72257 Cu Zn Sr 13.81751

Cu Ca 41.45253 Cu Zn Ti 13.81751

Cu Se 41.45253

Cu Ti 41.45253

doi:10.1371/journal.pone.0038845.t004

Table 5. Two ion module of Cu and three ion module of Cu
and Zn in metabolic syndrome.

Two ion module of Cu Three ion module of Cu and Zn

Ion 1 Ion 2 Score Ion 1 Ion 2 Ion 3 Score

Cu P 317.8027 Cu Zn P 124.3576

Cu Cr 221.0802 Cu Zn Cr 69.08755

Cu Mo 179.6276 Cu Zn Mo 69.08755

Cu Sn 165.8101 Cu Zn S 69.08755

Cu Sb 151.9926 Cu Zn Mg 41.45253

Cu Zn 138.1751 Cu Zn Re 41.45253

Cu Mg 124.3576 Cu Zn Se 41.45253

Cu Mn 124.3576 Cu Zn Sn 41.45253

Cu Re 124.3576 Cu Zn Sr 41.45253

Cu S 110.5401 Cu Zn Ca 27.63502

Cu Fe 69.08755 Cu Zn Fe 27.63502

Cu Sr 69.08755 Cu Zn Sb 27.63502

Cu Se 55.27004 Cu Zn Mn 13.81751

Cu Ca 41.45253

Cu Ti 41.45253

Cu K 27.63502

doi:10.1371/journal.pone.0038845.t005

Table 6. Two ion module of Cu and three ion module of Cu
and Zn in Type 2 diabetes.

Two ion module of Cu Three ion module of Cu and Zn

Ion 1 Ion 2 score Ion 1 Ion 2 Ion 3 Score

Cu P 221.0802 Cu Zn Mg 55.27004

Cu Cr 151.9926 Cu Zn P 55.27004

Cu Sn 138.1751 Cu Zn Ca 41.45253

Cu Mo 96.72257 Cu Zn Cr 41.45253

Cu Sr 96.72257 Cu Zn S 41.45253

Cu Mg 82.90506 Cu Zn Sb 41.45253

Cu Mn 82.90506 Cu Zn Sn 41.45253

Cu S 82.90506 Cu Zn Mo 27.63502

Cu Sb 82.90506 Cu Zn Fe 13.81751

Cu Zn 82.90506 Cu Zn Mn 13.81751

Cu Fe 69.08755 Cu Zn Re 13.81751

Cu Re 69.08755 Cu Zn Se 13.81751

Cu Ca 41.45253 Cu Zn Sr 13.81751

Cu Se 41.45253

Cu K 27.63502

Cu Ti 13.81751

doi:10.1371/journal.pone.0038845.t006
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diabetic controls [37,38,39,40,41], as well as between diabetic

patients with and without metabolic alterations [38]. However, it

still remains unknown regarding the cluster effect of ion modules/

networks on obesity and related metabolic disorders. Indeed, it was

noticed previously that multiple ions may interact synergistically or

antagonistically and consequently influence overall ion homeostasis

[13,14]. Moreover, a specific ion when presented alone or in a

combination with other ion(s) may have different impact on metabolic

outcomes. Therefore, although the ionomic approach provides a great

opportunity to study the global effect of multi-ions, it also becomes a

big challenge to elucidate complicated relationships and mechanistic

linking between multiple ions and metabolic disorders.

To better explore the complex associations between ionomic

profile and different stages of metabolic abnormalities in population

level, we employed a novel machine learning data processing

approach, namely mutual information in the present study. In many

prior studies, paired Student’s t test, Mann–Whitney U-test or

ANOVA have been frequently used to compare ion concentrations

in different groups [37,38,39,40,41,42]. One study also adopted

PCA analysis to explore relationships of metals/metalloids with

clinical parameters [42]. Although PCA analysis was admittedly

useful to construct patterns from high dimension data, the linear

dependence nature of this approach might lose information [21]

and could not describe adequately for the non-linear dependences

resulting from synergistic or antagonistic interactions within ion

modules/networks [13,14]. On the other hand, the mutual

information that measures the general dependence including both

linear and non-linear dependences [24,25], may allow us to discover

specific ionomic fingerprints attributing to different metabolic

outcomes. Indeed, with this approach, three specific ion networks

were constructed to reflect stages of obesity, metabolic syndrome

and type 2 diabetes. Certainly, more prospective studies are merited

to confirm our findings.

Another noteworthy finding of this study is that we characterized

ion modules/networks as ‘‘Individual ion’’, ‘‘Module ion’’ and

‘‘Module-individual ion’’, implicating that the role of a specific ion

in the pathogenesis of metabolic disorders may vary according to

whether single ion or ions in modules/networks were included in the

data analysis. For instance, Fe per se was not significantly associated

with type 2 diabetes, while it ranked 3rd in the ion networks

associated with type 2 diabetes. Previously, we have observed that

high Fe load, indicated by elevated circulating ferritin, was

significantly associated with type 2 diabetes in Chinese population

[43]. Prospective studies conducted in Western populations also

demonstrated a predictive role of ferritin level in the onset of type 2

diabetes [1,2]. The discrepancy between the current study and

earlier studies might be due to the fact that Fe was used as an ion

form rather than its protein biomarker like ferritin. However, given

the nature of complicating interactions between Fe and other ions,

such as Cu and Zn [13,14], it needs to be clarified whether Fe in a

specific ion module might act additively or synergistically with other

ions to influence overall risk of type 2 diabetes.

Another interesting phenomenon was that both Cu and P were

always ranked in the top two positions among 17 ions included in

the three specific ion networks related to obesity, metabolic

syndrome and type 2 diabetes, implicating potential associations of

Cu and P with these metabolic disorders. Indeed, increased level of

Cu was observed in diabetic patients [44]; while administration of

Cu chelating reduced insulin resistance and also alleviated glucose

intolerance in diabetic db/db mice [45]. In addition, high serum P

level was reported to be positively associated with hypercholester-

olemia and subclinical atherosclerosis [46], and might predict

cardiovascular mortality in type 2 diabetes [47]. Besides its role as

a single mineral, Cu also exhibits multiple mechanisms in

regulating ion homeostasis under physical and pathological

conditions. For examples, Cu could interact with Fe in the

processes of absorption, transportation and metabolism in multiple

tissues and cells, which may be modified by the amount and ratio

of each ions and likewise the overall interaction might also

influence whole body Cu-Fe homeostasis and related health or

disease conditions [13]. Moreover, the Cu-Mo interaction was also

suggested as a reaction between thiomolybdate and Cu by studies

in animal model and human tissue [48,49]. Significantly different

levels of Cu-Zn-superoxide dismutase (CuZn-SOD), a form of Cu

and Zn, were also reported between obese and non-obese controls

[50]. In addition, the Cu/Zn ratio was reported to be associated

with multiple abnormalities and diseases [51,52,53,54,55]. Re-

garding to P, the co-joint effect of P and Ca on increasing total

mortality of middle-aged men was reported in a Sweden cohort

[56], in line with adverse role of P contained ion modules in

metabolic disorders.

Although current study could not provide direct evidence for

the mechanistic link between plasma ions and metabolic disorders,

there are plausible explanations. First, several measured ions such

as Fe, Cu, Cr, Zn and Se were previously reported to be involved

in the induction or defense of oxidative stress [57,58]. Second,

genetic variants of several ions were shown to be associated with

diabetes. For instance, TMPRSS6 variants were significantly

associated with ferritin and risk of type 2 diabetes in Chinese

[59], while ferritin itself was an independent risk factor for

metabolic syndrome and type 2 diabetes [1,2,43]. However, we

observed significantly lower intake of multiple ions in subjects with

metabolic disorders (Zn, Se, Mg, Ca, P and K in overweight/

obesity, Zn, Ca and P in metabolic syndrome, as well as Mg, Ca, P

and K in diabetes, data not shown) in comparison with their

normal counterparts, although the influence of intake levels on

plasma ion concentrations remains unclear. Moreover, the strong

correlations between plasma Cu levels and inflammatory markers

suggest that the association between Cu levels and metabolic

disorders might be partially explained by inflammatory status [60].

Therefore, the complicated network and potential mechanistic

linking between multiple ions and metabolic disorders merit

further investigation.

Overall, by using the novel approach of the ionomics strategy

and the information theory, we observed potential links between

multiple ions and metabolic abnormalities. However, since our

findings were mainly driven by statistical analysis, future biological

and mechanistic studies are needed to confirm the observed

associations. Moreover, the cross-sectional nature of this study also

prevents us from establishing causal relation. Meanwhile, the case-

control design might also limit our findings to be generalized in

general populations. Certainly, more prospective studies are

merited in this regards. Nonetheless, our study attempts to use a

different methodology to explore the associations between multiple

ions and metabolic disorders in a large-scale population based

study.
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